티스토리 뷰
3. Wing lift effectiveness ${{C}_{{{L}_{\alpha }}}}$ at Mach number ${{M}_{\infty }}=0.2$
Wing lift curve slope ${{C}_{{{L}_{\alpha }}}}$ in subsonic flow
→ lifting line theory를 수정해서 만들어짐
\[{{C}_{{{L}_{\alpha }}}}=\frac{2\pi A}{2+\sqrt{\frac{{{A}^{2}}{{\beta }^{2}}}{{{\kappa }^{2}}}\left( 1+\frac{{{\tan }^{2}}{{\Lambda }_{c/2}}}{{{\beta }^{2}}} \right)+4}}\left( /rad \right)\]
\[\beta =\sqrt{1-M_{\infty }^{2}}:\] Prandl-Glauert subsonic compressibility factor
$\kappa =\frac{{{C}_{{{l}_{\alpha }}}}}{2\pi }:$
ratio of section lift effectiveness to the theoretical value of $2\pi $
이 식의 물리적 의미는 sweep angle이 있으면 양력효율이 떯어지고
Aspect ratio가 크면 양력효율이 증가한다는 것이다. (특히 aspect ratio가 작을때 (10이하))
\[{{C}_{{{L}_{\alpha }}}}=\frac{2\pi \times 5.33}{2+\sqrt{\frac{{{5.33}^{2}}\times {{0.98}^{2}}}{{{0.994}^{2}}}\left( 1+\frac{{{\tan }^{2}}20.56}{{{0.98}^{2}}} \right)+4}}=4.20(/rad)\]
\[\kappa =\frac{0.109\left( \frac{1}{\deg } \right)}{2\pi \left( \frac{1}{rad} \right)}\times \frac{180(\deg )}{\pi (rad)}=0.994\]
$\beta =0.98$
4. Wing zero-lift angle of attack ${{\alpha }_{{{0}_{wing}}}}$
\[{{\alpha }_{{{0}_{wing}}}}=\frac{2}{S}\int_{0}^{b/2}{\left( {{\alpha }_{0}}\left( y \right)-\varepsilon \left( y \right) \right)c\left( y \right)dy}\]
※ ${{\alpha }_{0}}$ = 0 대칭형 익형은 0양력 받음각이 0도이다
$=\frac{2}{168.75}\int_{0}^{15}{\left( \left( \frac{y}{5} \right)\left( 7.5-\frac{y}{4} \right) \right)}dy$
$= 1.33deg$
${{\varepsilon }_{t}}=-3(\deg )$
$\varepsilon \left( y \right)=\frac{-3}{15}y(\deg )$
5. Length and position of the mean aerodynamic (geometric) chord $\bar{c}$
평균 공력 시위를 구하는 방법은 2가지가 있다. (앞전과 뒷전이 직선이여야 한다)
5-1. $\bar{c}=\frac{2}{3}{{C}_{r}}\frac{1+\lambda +{{\lambda }^{2}}}{1+\lambda }$
\[=\frac{2}{3}\times 7.5ft\times \frac{1+0.5+{{0.5}^{2}}}{1+0.5}=5.833ft\]
5-2. $\bar{c}=\frac{2}{S}\int_{0}^{b/2}{{{c}^{2}}dy}$
$=\frac{2}{168.75}\int_{0}^{15}{{{\left( 7.5-\frac{3.75}{15}y \right)}^{2}}dy=5.833ft}$
6. Axial location of the wing aerodynamic center ${{X}_{A{{C}_{wing}}}}$
${{X}_{A{{C}_{w\operatorname{in}g}}}}$은 $\bar{c}$(mean aerodynamic chord)에 위치한다.
mean aerodynamic chord의 정확한 위치를 먼저 알아야한다.
${{X}_{L{{E}_{MAC}}}}=\frac{2}{S}\int_{0}^{b/2}{{{x}_{LE}}\left( y \right)c\left( y \right)dy}$
※ ${{x}_{LE}}\left( y \right)$ = chordwise location of leading edge at span station y
※ Taper ratio = $\lambda =\frac{{{C}_{t}}}{{{C}_{r}}}$
${{X}_{L{{E}_{MAC}}}}=\frac{2}{S}\int_{0}^{b/2}{{{x}_{LE}}\left( y \right)c\left( y \right)dy}$
$=\frac{2}{S}\int_{0}^{b/2}{\lambda y\left( {{C}_{r}}+\frac{\left( {{C}_{t}}-{{C}_{r}} \right)}{\left( b/2 \right)}y \right)dy}$
$=\frac{2}{168.75}\int_{0}^{15}{0.5y\left( 7.5+\frac{\left( 3.75-7.5 \right)}{15}y \right)dy}$
$=3.233ft$
→ Axial position at the wing's MAC (mean aerodynamic chord)
${{Y}_{MAC}}=\frac{2}{S}\int_{0}^{b/2}{c\left( y \right)dy}$
$= 6.67ft$
→ Spanwise location of MAC
(equivalent to spanwise location of centroid of area)
$\therefore \,\,\,{{X}_{A{{C}_{wing}}}}={{X}_{L{{E}_{MAC}}}}+0.25\bar{c}$
$=\,3.233ft\,+\,0.25\times 5.833ft$
※ 여기서 MAC에 0.25를 곱한 이유는 공력중심은 chord에 25%에 위치하기 때문..(대부분)
'공부방' 카테고리의 다른 글
[설계툴] XFLR5 사용 가이드 (33) | 2022.01.16 |
---|---|
비행기 함수로 만들기 (용어 정리 1) (5) | 2019.11.30 |
비행기 함수로 만들기 (3) (0) | 2019.11.27 |
비행기 함수로 만들기 (1) (0) | 2019.11.24 |
(서론)현대 비행 역학(Modern Flight Dynamics) (0) | 2018.11.17 |